skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Furman, Bradley T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Seagrasses are a polyphyletic group of marine flowering plants that play crucial roles in nearshore ecology, yet their interactions with viruses remain largely unexplored. This study presents the construction and characterization of an infectious cDNA clone of the potexvirus turtle grass virus X (TGVX). The complete genome of this positive-sense single-stranded RNA virus was amplified from field samples ofThalassia testudinumand assembled into a pLX-based mini binary vector using a multi-fragment directional cloning strategy, resulting in the infectious clone pLX-TGVX. Agroinfection assays of potexvirus-freeT. testudinumplants resulted in systemic infections by TGVX, as confirmed by multiplex RT-PCR experiments and phenotypic changes reflecting virus-induced symptoms. Ultrastructural studies also demonstrated significant cytopathological changes resulting from TGVX infection, including chloroplast swelling, reduced thylakoid grana, and the presence of viral replication organelles and filamentous virus-like particles. The development of the TGVX infectious clone offers a novel tool for investigating the impact of this virus on seagrass health and productivity. This study demonstrates the first successful agroinfection of a marine plant with an infectious clone, creating a new avenue for studying viruses identified through sequence-based surveys and paving the way for exploring the ecological significance of viral infection in these critical marine ecosystems.IMPORTANCEThis study pioneers the construction of an infectious clone of turtle grass virus X and describes its application in the natural marine plant host,Thalassia testudinum. The creation of this infectious clone not only provides a valuable tool for marine plant virology research but also opens new avenues for exploring the influence of viral infections on the health and productivity of seagrass meadows. Given that seagrasses play a crucial role in sediment stabilization, nutrient cycling, and habitat provisioning, understanding the impact of viruses on these ecosystems is essential for their effective conservation and management. This methodological advance enables detailed studies of viral replication, virus-host interactions, and the broader ecological implications of viral infections in marine plants. 
    more » « less
  2. Free, publicly-accessible full text available April 1, 2026
  3. Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions. 
    more » « less
  4. Seagrasses are long-lived, clonal plants that can integrate fluctuations in environmental conditions over a range of temporal scales, from days to years, and can act as barometers of coastal change. There are many estimated seagrass traits and ecosystem parameters that have the potential to reflect ecosystem status, linking seagrass condition to natural and anthropogenic drivers of change. We identified five seagrass indicators and seven metrics that are suitable, affordable and frequently measured by 38 monitoring programs across the Gulf of Mexico (GoM). A specific set of ratings and assessment points were formulated for each measurable metric. We determined metric ratings (Acceptable, Concerning, Alarming) and validated assessment points using long-term monitoring data from Texas and Florida, coupled with existing literature and input from a panel of seagrass biologists. We reported scores using a blue-gray-orange (Acceptable-Concerning-Alarming) scale to summarize information in a format accessible to the public, resource managers, stakeholders, and policymakers. Seagrass percent cover, shoot allometry and species composition were sensitive indicators of large-scale climatic disturbances (droughts, hurricanes). Severe drought led to reductions in total seagrass cover and leaf length in Upper Laguna Madre, Texas, and Florida Bay; however, Syringodium filiforme was disproportionally affected in Texas while Thalassia testudinum beds responded strongly to drought impacts in Florida. Hurricanes Harvey (TX) and Irma (FL) also resulted in loss of seagrass cover and diminished leaf length in the Texas Coastal Bend and Florida Keys; both storms largely impacted T. testudinum and to a lesser extent, S. filiforme. Many of the metrics within these affected bays and basins received either a “Concerning” or “Alarming” rating, driven by the impacts of these disturbances. Our proposed indicators serve as a tool to evaluate seagrass condition at the bay or basin scale. Moreover, the indicators, metrics, and assessment points are amenable to large-scale evaluations of ecosystem condition because they are economically feasible. This framework may provide the foundation for a comprehensive assessment of seagrass status and trends across the entire GoM. 
    more » « less
  5. Abstract Macrophyte foundation species provide both habitat structure and primary production, and loss of these habitats can alter species interactions and lead to changes in energy flow in food webs. Extensive seagrass meadows in Florida Bay have recently experienced a widespread loss of seagrass habitat due to a Thalassia testudinum mass mortality event in 2015 associated with prolonged hypersalinity and bottom-water anoxia. Using stable isotope analysis paired with Bayesian mixing models, we investigated the basal resource use of seven species of seagrass-associated consumers across Florida Bay in areas affected by the 2015 seagrass die-off. Three years after the die-off, basal resource use did not differ for species collected inside and outside the die-off affected areas. Instead, consumers showed seasonal patterns in basal resource use with seagrass the most important in the wet season (58%), while epiphytes were the most important in the dry season (44%). Additionally, intraspecific spatial variability in resource use was lower in the wet season compared to the dry season. We were unable to detect a legacy effect of a major disturbance on the basal resource use of the most common seagrass-associated consumers in Florida Bay. 
    more » « less
  6. null (Ed.)
    Seagrasses are threatened worldwide due to anthropogenic and natural disturbances disrupting the multiple feedbacks needed to maintain these ecosystems. If the disturbance is severe enough, seagrass systems may undergo a regime shift to a degraded system state that is resistant to recovery. In Florida Bay, Florida, United States, two recent, large-scale disturbances (a drought-induced seagrass die-off in 2015 and Hurricane Irma in 2017) have caused 8,777 ha of seagrass beds to degrade into a turbid, unvegetated state, causing a large sediment plume. Using satellite imagery digitization and long-term seagrass cover data, we investigate the expansion of this sediment plume between 2008 and 2020 and the potential interaction of this sediment plume with seagrass recovery in two focal basins in Florida Bay affected by the die-off, Johnson and Rankin. The average size of the sediment plume increased by 37% due to the die-off and Hurricane Irma, increasing from an average of 163.5 km 2 before the disturbances to an average of 223.5 km 2 . The expansion of the plume was basin-specific, expanding into Johnson after the 2015 seagrass die-off with expansive and long-lasting effects, but only expanding into Rankin after Hurricane Irma with less severe and short-term effects. Furthermore, the sediment plume was negatively correlated with seagrass cover in Johnson, but held no relationship with seagrass cover in Rankin. Thus, different disturbances can act upon seagrass ecosystems at varying scales with varying consequences. This study illustrates the advantage of combining satellite imagery with field data to monitor disturbances as well as highlights the importance of investigating disturbances of seagrass ecosystems at various scales to comprehend seagrass resilience in the context of future extreme events. 
    more » « less
  7. Hurricanes are some of the largest environmental drivers of change in coastal systems. We investigated the impacts of Hurricane Irma on benthic macrophyte communities in Florida Bay (FB) and the Florida Keys National Marine Sanctuary (FKNMS), USA. Spatiotemporal analyses were performed at multiple hierarchical levels (site, zone, region) to identify potential changes in the Braun-Blanquet (BB) densities of total seagrass (TSG) and total calcareous green macroalgae (TCAL) post-disturbance and to determine whether changes were attributable to hurricane impacts or normal seasonal and inter-annual variability. There were significant decreases in TSG in one of five zones in FKNMS and in one of six zones in FB, but no change in TCAL was recorded in either system. TSG in the Lower Keys Bayside declined from a mean BB score of 2.6 to 1.2, resulting from storm-induced erosion, whereas TSG in coastal FB declined from 1.05–2.4 to 0.36–2.0, likely due to prolonged hyposalinity and low dissolved oxygen following stormwater drainage. Overall, impacts to South Florida benthic macrophyte communities from Hurricane Irma were not catastrophic and were limited in spatial extent. Our results suggest that coastal areas hit by a storm with heavy winds are more likely to sustain direct physical impacts to the benthos, whereas estuarine areas with longer residence times are more at risk of the indirect effects of stormwater runoff and retention. Our analyses placed putative hurricane impacts within the context of recent variability and historical system baselines through the use of long-term monitoring data coordinated by multiple governmental and academic entities. 
    more » « less